11.5 Videos Guide

11.5a

• <u>The Alternating Series Test</u> (statement and proof): If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots, \text{ where } b_n > 0, \text{ satisfies}$ (i) $b_{n+1} \leq b_n$ for all n (ii) $\lim_{n \to \infty} b_n = 0$ then the series is convergent.

11.5b

Exercises:

• Test the series for convergence or divergence.

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+1}}$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} n e^{-n}$$

$$\circ \quad \sum_{n=1}^{\infty} (-1)^{n-1} \arctan n$$

11.5c

Theorem (statement and proof):

• The Alternating Series Estimation Theorem: If $s = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is a series that converges by the Alternating Series Test, then $|R_n| \le b_{n+1}$.

Exercise:

• Use the Alternating Series Estimation Theorem to estimate the sum correct to four decimal places.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{8^n}$$

11.5d

Definitions: (absolute and conditional convergence)

- A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent.
- A series $\sum a_n$ is conditionally convergent if it is convergent but the series of absolute values $\sum |a_n|$ is divergent.

Theorem (statement and proof):

• If a series $\sum a_n$ is absolutely convergent, then it is convergent